Monomiality principle and related operational techniques for orthogonal polynomials and special functions
نویسنده
چکیده
Abstract— The concepts and the related aspects of the monomiality principle are presented in this paper to explore different approaches for some classes of orthogonal polynomials. The associated operational calculus introduced by the monomiality principle allows us to reformulate the theory of Hermite, Laguerre and Legendre polynomials from a unified point of view. They are indeed shown to be particular cases of more general polynomials, whose usefulness in purely mathematical and applied context is discussed. The powerful tool represented by the Hermite and Laguerre polynomials allows us to derive classes of isospectral problems in applied mathematics and economics.
منابع مشابه
Monomiality, Orthogonal and Pseudo-orthogonal Polynomials
We reconsider some families of orthogonal polynomials, within the framework of the so called monomiality principle. We show that the associated operational formalism allows the framing of the polynomial orthogonality using an algebraic point of view. Within such a framework, we introduce families of pseudo-orthogonal polynomials, namely polynomials, not orthogonal under the ordinary definition,...
متن کاملAssociated Laguerre Polynomials: Monomiality and Bi–Orthogonal Functions
We exploit the concepts and the formalism associated with the principle of monomiality to derive the ortogonality properties of the associated Laguerre polynomials. We extend a recently developed technique of algebraic nature and comment on the usefulness of the proposed method.
متن کاملNumerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials
In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...
متن کاملThe operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications
In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order $gamma$ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...
متن کاملSheffer polynomials, monomiality principle, algebraic methods and the theory of classical polynomials
The Sheffer polynomials and the monomiality principle, along with the underlying operational formalism, offer a powerful tool for investigation of the properties of a wide class of polynomials. We present, within such a context, a self-contained theory of such familiar systems of polynomials as the Euler, Bernoulli, Bessel and other clasical polynomials and show how the derivation of some of th...
متن کامل